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In K systems with localized double bonds, the switch from one localization pattern to another symmetry-equiv- 
alent one, and the corresponding changes in electron distribution are often considered to proceed via a delocalized 
transition state of higher symmetry. We present a different mechanism, according to which the double-bond 
localization and the concomitant charge distributions can fluctuate without change in energy and without passing 
through a delocalized, higher-symmetry transition state. This result is obtained within a simple, independent-elec- 
tron (HMO-type) treatment. 

1. Introduction. - Many molecules, in particular those with non-alternant 71 systems, 
for which a series of Kekulk formulae (K) can be written, prefer to localize their double 
bonds, and distort according to a structure (L) close to one of these Kekulk formulae, 
instead of assuming a delocalized structure (D) corresponding to their (weighted) super- 
position [l]. A classical example is pentalene 1 [2] (cf Scheme I ) ,  where the C,,-localized 
structures l(LJ and l(LJ lie energetically lower than the D,, structure 1(D), which may be 
roughly described as the resonance hybrid 1(K,)- l(Kz). The latter is the transition state 
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for the valence tautomerism or the bond-switching reactions 1(LJ + 1(D) + 1(L,) and 
1(L,) -+ 1(D) --f l(Ll), which need a substantial activation energy E # of - 15 kJ . mol-', as 
indicated qualitatively in Scheme 1 [3]. 

Usually, but not always') (cJ: [2]), such a double-bond localization (DBL) is accompa- 
nied by a reduction of symmetry, relative to the energetically less favorable delocalized 
structure, e.g. in the case of the structures 1(LJ and l(LJ relative to l(D). 

The double-bond localization (DBL) is equivalent to a redistribution of charge, e.g. in 
the case of 1(D) + 1(L,) or l(L,) an increase in charge density at C(1), C(3), C(4), and 
C(6), a decrease at centres at C(2), C(5), C(7), and C(8), and an increase (decrease) in 
overlap population for the double (single) n bonds in 1(L,) and l(LJ relative to the charge 
distribution in 1(D). The mechanism of such charge shifts (electron transfer, bond shifts, 
conductivity in large systems) is a fundamental problem in contemporary chemistry, and 
has received much attention in studies of electron transfer and of conductivity in crystals 
and polymers [4-61. 

To gain an insight into the rules which govern such charge shifts, one must first 
understand the mechanism leading to, or preventing DBL in a molecule. 

Consider the benzene molecule. Here, the delocalized D,, structure is an absolute 
minimum on the energy hypersurface. The n-localized D,, structures lie higher in energy, 
and none of them (with exception of the limiting case of three acetylenes) corresponds 
even to a local minimum. 

It follows that, if we are looking for molecules possessing a low-energy pathway for 
charge migration, we must look for molecules undergoing spontaneous DBL, but which 
nevertheless offer a low-activation-energy path for switching from one localized structure 
to another. 

In this paper, we propose a mechanism for charge redistribution, which allows the 
passage jrom one localized structure L, to other localized structures Li without passing 
through a delocalized structure D of higher energy, i.e., without (significant) activation 
energy. Our model is based on second-order perturbation theory within the Huckel 
formalism [7] (see Appendix). 

2. Double-Bond Localization and Charge Shifts in z Systems. -~ The model treatment, 
its advantages, and its inherent disadvantages have been already described in detail [7]. (It 
is briefly presented in the Appendix, where the relevant formulae have been numbered A I ,  
A2, etc.) A short summary of the assumptions involved may be helpful. 

The results to be discussed below are obtained by a four-step procedure as follows: 
f) A standard HMO calculation is performed for the n system of the molecule, 

assuming maximal symmetry of the graph @ representing its topography, and assuming 
all bond-lengths equal, i.e. Rl," = R,. Although the exact value of R, is irrelevant at this 
stage, we assume that it corresponds to that of a benzene n bond of bond-orderp, = 213, 
i.e. R, z 140 pm (cf. A6) ,  to which we assign a standard resonance integral Do. This 
calculation yields the HMOs p; ( A I ) ,  the corresponding orbital energies E, (A2) ,  the 
bond-orders pi,,, ( A d ) ,  and the bond-bond polarizabilies nll,,,pn (A9) ,  the latter collected in 
the matrix x = (n,ib,;,o). 

' )  Thus, the hypothetical, planar dicyclobutd[u,r]- 
cyclooctene (2) has D,, symmetry, both in its de- 
localized 2(D) and in its localized structures 2(L): 
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ZZ) First-Order DBL. We define as first-order DBL, the change 6R,, of each of the 
individual bond-lengths RILL from the assumed standard length R, to a length R;, defined 
by the individual bond-orders pPv according to R;,, = R, + r(p," - 213) (cf. A.5, A6) .  This 
assumes that each bond-length change dR,,, can be adjusted independently of the changes 
dR,,, in the other bond-lengths Rpn. An important consequence is that Jirst-order DBL 
conserves the original symmetry of the structure underlying step I. 

ZZZ) Second-Order DBL. Second-order DBL, i.e. the changes of the bond-lengths R,,, 
relative to the values Riv computed in step ZZ, is obtained according to the procedure 
outlined in the Appendix, i.e. by diagonalizing the bond-bond polarizability matrix x 
( A l l ) .  This yields two results: 

a )  The largest eigenvalue I,,, ( A 1 2 )  of x determines, if the molecule will undergo 
second-order DBL, depending on whether A,,, > ACr,t,CBI, or A,,, < I,,,,,,,, (AZ4), where iv,,,,,,,, 
is a critical value, estimated [7] to be in the range 1.7 < il,,,,,,,, < 1.8. 

6) The components u , , , ~ ~ , , ~  of the eigenvector M,,,,, of %corresponding to A,,, ( c t  AZ3) 
yield estimates of the second-order DBL bond-length changes relative to Rj,. These 
changes dR,, = R,,, - R;, are proportional to the changes 6p,, =A, in the bond-or- 
ders, wheref,, is a factor of unspecified sign. Note that the individual changes dR,,, now 
include the dependence on the changes 6R,, in all the other bonds po # pv. 

ZV) The size off,, yielding estimates of R,I1.,PY, i.e. of the equilibrium structure of the 
molecule, depends on higher-order terms not considered in our treatment. Assuming an 
ad hoc estimate forf,, and thus for d,, (cf formulae AIS-AI 7 of the Appendix), yields the 
desired equilibrium-structure bond-orders P,,,.~,, which in turn determine the equilibrium 
interatomic distances R,,,,,,,, and thus the appropriate values of the resonance integrals 

P/ iu .eq  = Pot 1 + 6,,,,eq), 

f i , " . C ,  = (2/3)(P," - 2/31 + ~manav/2 

(1) 

where the correction terms are given in a sufficient approximation by 

(2)  

as shown in the Appendix (A1 7). With these new values of P,v,cq, one runs a further HMO 
calculation, which yields the corresponding charge orders q,,eq and thus - by comparison 
with the original q, values - the charge drifts qu,eq ~ qlr due to second-order DBL. (The 
pecularities of the HMO formalism, concerning charge distributions in TC systems are 
discussed in the Appendix, cf: formulae A18-A20.) 

For pentalene (l) ,  the standard HMO calculation (all [Iflb =Do) yields the bond orders pl,* = 0.650, 
= 0.524, and p7,* = 0.531, which determine the first-order DBL, as well as the charge orders q, = 0.815, 

y2 = 1.173, and q7 = 1.198. The largest eigenvalue of the bond-bond polarizability matrixn(1) is I,,, = 2.357, 
which is larger than 1.,,,,,,,, L 1.8. From this, we conclude that 1 undergoes second-order DBL. The corresponding 
eigenvector ~,,,,,(1) is shown here graphically, where the numbers correspond to the individual components 
"max,,,,,: 

This means that second-order DHL leads to a stabilization of 1 by a bond-alternation mode, reducing the symmetry 
of'thc molecule from D,, to CZh. 
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We now compute the correction terms (rpl ,eq, using Eqn. 2, which yield, according to Eqn.1 the following 
resonance-integral ratios: 

A" 1.2 I .7 2.3 3.8 7.8 

G " , e q / P o  1.17 0.73 0.81 1.07 0.90 (4) 

A HMO calculation with these parameters gives the following charge orders qp,eq which, compared with the 
original values qp, yield the charge-order shifts d q ,  = q,c,eq - qp that accompany the second-order DBL: 

P 1 2 3 7 

qira 0.970 1.064 0.867 1.098 

q P  0.815 1.173 0.815 1.198 

4 +0.155 -0.109 +0.052 -0.100 

The charge shifts correspond to a trend towards local neutrality, i.e. the qp.cq for l(L,) or l(Lz) are closer to unity 
than the qp ofthe delocalized structure l(D). The bond-orders (PI,' = 0 . 8 9 1 , ~ ~ , ~  = 0.8O2,pl,, = 0 . 2 7 2 , ~ * , ~  = 0.361, 
p7,* = 0.427) show that this particular DBL pattern corresponds to l(Lz) given in Scheme 1. 

In principle, steps I-ZV should be iterated, until self-consistency in charge- and 
bond-orders is reached. However, this is hardly warranted in view of the crudeness of the 
model. Furthermore, it has been shown [8] that inclusion of electron-electron interaction 
into the above scheme does not yield results which are significantly different. On the 
whole, the same seems to be true for many-electron treatments of DBL, initiated mainly 
by Dewar et al. [9]. 

Although the above formalism involves all the HMO 71 orbitals, the type of distortion 
can often be obtained from the direct product T(HOMO)@T(LUMO) of the irreducible 
representations to which the HOMO and LUMO belong [lo]. This is similar to a 
treatment of the pseudo-Jahn-Teller effect [ 1 11, which considers the stabilization of the 
molecule arising from a distortion along the normal mode which most efficiently couples 
the ground state with excited states of another symmetry. The excited state, which offers 
the most efficient stabilization, corresponds, on a molecular-orbital level, to the one 
dominated by the HOMO + LUMO configuration, and the corresponding distortion 
mode is again determined by the direct product T(HOMO)@T(LUMO). A similar 
treatment has been proposed by Nakajima et al. [12]. For pentalene (l), the HOMO and 
LUMO belong to the irreducible representations B,, and A,, respectively, and the direct 
product B,,@A, = B,, indeed describes the distortion mode, shown in (3). The reason, 
why the HOMO and LUMO play a decisive role here, is the small orbital-energy gap 
E~~~~ - E,,,, between the two orbitals. This is often the case in molecules undergoing 
second-order DBL (see A9 in Appendix). 

3. Fluctuating Double-Bond Localization'). - In the mechanism we now present, the 
localized structures Li, (e.g. L, and L2) are more stable than the delocalizedstructure D (i.e. 

') Before we discuss examples of fluctuating DBL, we should state briefly what we do not wish to include under 
this heading. Quite apart from molecules with a fluctuating structure, where localized double and single bonds 
are cleaved and formed in a concerted reaction, e.g.  in bullvalene, we also exclude the limiting case 
Awdx = A,,,,,,,, (cf. criterion A14 in Appendix). Under this condition, the delocalized structure D and the 
localized structures L, and L, are accidentally degenerate, so that the transition from L, to L, proceeds - as far 
as our model is concerned (cf [7]) ~ without activation energy, but still via the delocalized transition state D of 
higher symmetry. 
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A,,, > ACrltlCaI), and at the same time can interconvert into each other without passing through 
a higher-energy transition state in particular without passing through the delocalized 
structure D. This mechanism is explained with reference to two particular examples. 

3.1. Neutral Systems. Example: Z,Z’-Bipentalenyl (3). Here, the bond-bond polariz- 
ability matrix n(3), of order 19 x 19, yields as largest eigenvalue Amax(3) = 3.026. Thus, by 
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linking C(2) and C(2’) of the two pentalene moieties, the tendency towards DBL has 
increasedwith respect to that of the parent pentalene 1 (AmaX(l) = 2.357). However, a more 
remarkable result is that this eigenvalue is degenerate, the two corresponding, normalized 
eigenvectors C&,ax,l(3) and CYI, , ,~~ ,~ (~ )  having the following form: 

The eigenvector ~ , , , ~ ~ , , ( 3 )  corresponds to DBL in the left pentalene moiety, and the 
eigenvector MmaX,,(3) to DBL in the right one. In each case, the other moiety remains 
delocalized, as described by first-order DBL. Since the two particular solutions shown in 
( 6 )  are degenerate, any linear combination is also a solution with the same value Amax(3). 
Thus, we can form the mutually orthogonal pair of general, normalized solutions (7) ,  
where the angle w can take any value between 0 < w < 2z : 

@J”,,,(3) = M,d3) cosw + @Lax,2(3) sinw 

@kaX(3)’ = ~, , , , , (3)  sinw - @%ar.2(3) ~ 0 s ~ .  
(7) 

All these solutions, including ~, , , , , (3)  (w = 0) and [IOmax,2(3) (w = z/2) shown in (6 ) ,  
correspond to DBL patterns 3(L,) well away from the fully delocalized structure 3(D) of 
3. In fact, the linear combinations (7) imply that we can pass from a particular localiza- 
tion pattern 3(L,), determined by some value of the angle w, to any other pattern 3(L,0) 
corresponding to a different angle w’ # o, without change in energy. In the Figure is 
shown how the localization pattern 3(LJ depends on w. Strong DBL switches from one 
side of the molecule to the other, passing through patterns where both sides exhibit 
weakened DBL. In these intermediate situations, both components ~ ~ ~ ~ , , ( 3 )  and ~ , , ,~~ ,* (3 )  
in (7) are weighted by lcoswl < 1 or lsinwl < 1, e.g. by 1 1 4  if w = 7114. In this whole 
process, the itinerary never passes through the high-energy, fully delocalizedstructure 3(D), 
the centre of the circle shown in the Figure. 
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Figure. Degenerate DBLfluctuation in? 2,2'-hi/~u/iru/r/i?.( (3 )  m r l  its rudicul curion 3 '. Dotted lines in a pentalene unit 
indicate that it is delocalized and has local D,, symmetry with bond lenghts corresponding to first-order DBL, i.e. 
according to the bond ordersp,,,. Alternating double and single bonds indicate the presence of second-order DBL. 
Bold double bonds correspond to shorter, more strongly localized double bonds. In the case of the radical cation 
3+, the positive charge is located preferentially on the delocalized pentalene unit. The indicated values ofthe angle 

w refer to formula (7). 

Whereas our simple HMO treatment predicts that the process depicted in the Figure 
proceeds without any activation energy, the presence of small barriers can obviously not 
be excluded. However, such barriers should be much smaller than the activation energy 
E #  for the bond-switching process in pentalene 1. If they are within the range of 
zero-point energies of normal vibration modes corresponding to the distortions ( 6 )  or 
(7 ) ,  then these vibrations will cause the DBL in 3 to oscillate from one pentalene unit to 
the other in a non-activated manner. 

In the case of 3 (and for similar molecules), the symmetry argument presented in 
context of pentalene 1, runs into a subtle difficulty. The graph of molecule 3 is of 
symmetry D2,, assuming the molecule to be planar. Whereas the canonical HOMO of 3 
( E ~ ~ ~ ~  = a )  is non-degenerate and belongs to the irreducible representation B,,, there is a 
pair of degenerate, canonical LUMOs (eLUMO = LY + 0.206/3) belonging to B,, and A,, 
respectively. The small HOMOiLUMO gap might suggest that the DBL pattern is 
determined mainly by the symmetry behavior of these orbitals. Accordingly, the pre- 
dicted DBL patterns should belong either to the irreducible representations 
B,,@B,, = B,, or A,@B,, = B,". This is indeed the case as shown in the following dia- 
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grams, which are identical to those in the Figure for o = n/4 and o = 7x14. But it is not 
obvious from this argument that these patterns should correspond to the same eigenvalue 
AmaX(3) = 3.026 of the bond-bond polarizability matrixz(3). Note that the in-phase and 
out-of-phase linear combinations of the patterns (8) do indeed correspond to the eigen- 
vectors ~,,,,,(3) and M ",,,, ?(3) shown in (6) .  
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An alternative procedure would have been to assign to the two accidentally degenerate LUMOs of 3 the 
semi-localized orbitals ( 9 )  having finite coefficients in only one or the other of the two pentalene moieties. These 
orbitals, which do not reflect the D,, symmetry of the molecule, suggest, however, that the DBL pattern should 
conform to the eigenvectors of (6) .  

An amusing consequence of the situation depicted in the Figure is that an appropriately substituted 2,2'-bipen- 
talenyl (4), in which the substituents X are assumed to be locally achiral (eg .  CI-atoms), would be chiral for all 
values of w describing its DBL, with the exception of w = n/4 and w = 5n/4, for which it has C, symmetry, i.e. as 
depicted below. Thus, 4 would switch, without changing its energy, from one enantiomer to its mirror image. This 
is a special case of a narcissistic reaction [13], not needine any activation enerzy. 

4 

3.2 .  Charged Systems. Example: Z,Z'-Bipentalenyl Radical Cation. Removal of an 
electron from the HOMO of pentalene 1 yields its radical cation 1' in the electronic 
ground state. The largest eigenvalue of the bond-bond polarizability matrixz(l+) is now 
A,,, = 1.358, which is smaller than Acntlca, (condition A14 in Appendix). Consequently, 1' 
does not undergo DBL, but preserves its maximal D,, symmetry. 
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On the other hand, the matrixx(3+) of the 2,2’-bipentalenyl radical cation 3’ in its 
electronic ground state yields Ama,.(3+) = 2.040 which does satisfy condition A14 (see 
Appendix), implying that the fully delocalized radical cation 3’(D) lies above the delocal- 
ized one in energy. Again, AmaX(3+) = 2.040 is a degenerate eigenvalue, the components of 
its eigenvectors M,,,ax,l(3+) and Mman,2(3+) being practically those of ao,,x,l(3) and MmaJ3) 
shown in (6). It follows that our conclusions about DBL in 3 are equally valid for 3’. In 
particular, the linear combinations (7) again yield the cycle of localization patterns shown 
in the Figure. 

The only novel feature concerns the changes in charge distribution which accompany 
the fluctuation of DBL. In the absence of DBL, the positive unit charge e is distributed 
over the delocalized radical cation 3(D) according to (cf A18-Al9, Appendix) 

Q: = e - Q,, = e(1 - 4,) (10) 

with Z,Qt = e. This frozen charge distribution is totally symmetric with respect to the 
symmetry operations of D2h. When second-order DBL sets in, the charge distribution 
depends on o, and thus fluctuates with the localization patterns. A procedure for 
calculating the charge distribution Q,, and thus of QL, for a given set of values U, , , ,~ , , (W)  

obtained from (7 ) ,  is described in Appendix (A15-AI7). Results for the special values 
w = 0, z/2, z, 3 ~ 1 2 ,  i.e. when the second-order DBL nests completely in one or the other 
of the pentalene moieties, are shown in ( I  I ) ,  where the net positive charges Q’ have been 
obtained by summing over the centres ,u in the pentalene units: 

It is seen that I 

+ + + + 

e odd electron, and thus the positive charge, prefers to nest on the 
delocalized moiety of 3+, as might have been expected from the result that 1’ itself prefers 
to be delocalized. If the charge localization proceeds as in ( l l ) ,  then an excess positive 
charge of 0.40e will oscillate between the two molecular halves in phase with the fluctua- 
tion of second-order DBL. Again, this movement proceeds along a quasi-equienergetic 
path. According to our model, this type of ‘charge transfer’ or partial ‘electron transfer’ is 
not an abrupt event, but a continous wave-like process arising from the degeneracy of all 
possible DBL patterns 3+(L,) described by (7)’). 

Of course, the changes of localization pattern in the neutral parent 3 are also accom- 
panied by changes in the Q, values, which now satisfy .Z,Q,, = 0. For o = 0 (cf. Fig.), the 
net charge on the localized (left) pentalene unit is QI,, = 0.048e and on the (right) 
delocalized one Qdeloc = 0.048e. As expected, the size of charge separation in the neutral 
molecule 3 is significantly smaller than the charge transfer in radical cation 3’. 

’) This process differs from the ‘sudden polarization’ discovered and discussed by Salem and coworkers [14]. In 
terms of our model, ‘sudden polarization’ occurs as the result of an accidental HOMOiLUMO degeneracy 
forced by structural changes, such as those accompanying the formation of an activated reaction complex. 
Under the condition = cLUMO, the bond-bond polarizahilities ( A 9 )  become infinite, the denominator 
c ~ , ~ ~ ~  - cHOMO being zero. Obviously, this implies that .I,,, = 00. 
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4. Polypentalenyls and Their Radical Cations. ~ Using the same treatment, we now 
examine how the number of repeating moieties in a linear chain will affect second-order 
DBL. For consistency, we use again pentalene units as building blocks to form 2,2’: 5’,2”- 
terpentalenyl 5,, 2,2’:5’,2” :5“,2”’-quaterpentalenyl 4 , ,  and 2,2’: 5‘,2”: 5”,2”’ : 5“‘,2””-quin- 
quepentalenyl5, and their radical cations 5; (cf.  Scheme 2). Note that 5, = 1 = pentalene, 
and 5, = 3 = 2,2‘-bipentalenyl. Table 1 lists those eigenvalues A, of the bond-bond polariz- 
ability matricesR(5,) andz(5;)), N = 1, 2, 3, 4, and 5 ,  which exceed (A14, Ap-  

,Wienii, 2 

5 ,  = 1 

5, = 3 

53 

5 4  

Table I .  Eigenvalues 1, of the Bond-Bond Polarizability Matrices%(N) of the Polypentulenyls5N andof Their Rudical 
Cations 5& with N = 1,2,3,4, and 5. Only the eigenvalues satisfying condition (A14) (Appendix) are given. The 
largest eigenvalue I,,, is given in italics. The corresponding eigenvectors M, are given symbolically as the DBL 

patterns, L and D designating a pentalene unit with or without DBL, respectively. 

Molecule 4 Radical cation 4 DBL Pattern 

5 1  2.357 5: 1.358 L 

52 3.026 5: 2.040 L D  
3.026 2.040 D L  

53 4.361 5: 2.625 D L - D  
3.359 2.528 L--D-D 
3.359 2.528 D-D-L 

54 5.161 5‘7 3.252 D-L-D-D 
3.252 D-D-LD 5.161 

3.559 2.855 L-D-D-D 
3.559 2.855 D-D-D-L 

55 6.362 5; 3.856 DD-L-D-D 
5.695 3.825 W L  -D-D-D 
5.695 3.825 D-D-DL-D 
3.693 3.085 L-D -D-D-D 
3.693 3.085 D-D-D-DL 
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pendix). In addition, the corresponding eigenvectors M, are symbolically represented by 
the corresponding DBL patterns, L and D standing for a pentalene moiety with or 
without double-bond alternation, respectively, as shown explicitly for 5, = 3 in (6). 

One notes that A,,, is degenerate for even N ,  but single if Nis odd. The number of A, 
values which satisfy criterion (A14) ,  i.e. Ai > A,,,,,,,,, equals the number N of pentalene 
units in the particular polypentalenyl chain. The remaining 1, values (not listed) are 
smaller than 0.6, i.e. well below Acritlca, z 1.8 to 1.9. 

The corresponding eigenvectors M,,,,,(5,v) and Mmax(5i) (Table 1 )  show that the second- 
order DBL involves only the central pentalene unit, if N is odd, or the innermost pair of 
rings, if N is even and A,,, thus degenerate. It follows that, for even N ,  a general 
eigenvector can be written in analogy to (7), and that DBL will fluctuate in a similar 
fashion to that shown in the Figure for 5,r3 .  DBL in the remaining (outer) pentalene 
units will need some activation energy relative to the preferred DBL described by MIlmaX(SN) 
or M,"JS+N). This energy will depend on the size of the corresponding 2, values, but will be 
much smaller than the energy needed to reach the situation in which all pentalene units 
are delocalized. Accordingly, it is still possible for DBL to fluctuate over all pentalene 
units without passing through a completely delocalized transition state. Whether the 
fluctuations described by eigenvectors M,(5,v) ~ or M,(5;) ~ belonging to different eigenval- 
ues A, are synchronized or not, will depend on the vibrational modes which link the 
fluctuation patterns. In a first approximation, the relative number of molecules exhibiting 
one or the other of the DBL patterns will be given by a Boltzmann distribution. 

As discussed in connection with the radical cation 5; = 3+, the positive charge of the 
radical cations 5: tends to avoid the localized pentalene unit and to spread itself over the 
remaining ones. Thus, with increasing number N of linked pentalenes, the magnitude of 
the fluctuating charge will become smaller. Apart from that, all other remarks made in 
connection with 5: = 3' remain valid. 

5. l,o-Di(pentalen-2-yl)polyenes and Their Radical Cations. ~ To avoid the spread- 
ing of charge over N linked pentalene units, as described in the last paragraph for the 
radical cations 5+N, we examine briefly the case where only two pentalene moieties are 
linked at C(2) and (C2') via an alternant n system. The simplest examples of this type 
consist of polyene chains of n double bonds, carrying a pentalen-2-yl group at both ends, 
e.g. 6, = 1,2-di(pentalen-2-yl)ethene, 6, = 1,4-di(pentalen-2-yl)buta-1,3-diene, 6, = 1,6- 
di(pentalen-2-yl)hexa-1,3,5-triene, 6, = 1,8-di(pentalen-2-yl)octa-1,3,5,7-tetraene, and 
the corresponding radical cations 6; (6, is identical to 3). 

Diagonalization of the bond-bond polarizability matrices ~ ( 6 , )  and ~(6: )  for n = 0 to 
4, yields the degenerate eigenvalues A,,,, listed in Table 2. Again, all A,,, values are 
significantly larger than Acrll,cnl, thereby satisfying the criterion ( A 1 4 )  (Appendix). Further- 
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Table 2. Eigenualues A, of the Bond-Bond Polurizuhility Matrices X (n) ofthe I .w-Dijpentalen-2-yl~polyene.~ 6, and of 
their Rudical Cations 6: with n = 1,2,3, und4. The doubly degenerate eigcnvalucs J.,,,, satisfying condition (A14)  
(Appendiu), are givcn in italics. All other eigenvalues, of which only is shown, are much smaller than 1,,,,,,,,. 

Molecule L a x  ~"nlax-  I Radical cation 4 n a x  Am1x-i 

3.026 0.570 6,: 
3.054 0.640 6: 
3.085 0.792 6: 
3.114 0.925 6f  
3.140 1.037 6: 

2.040 0.655 
2.137 0.728 
2.221 0.831 
2.288 0.933 
2.344 1.030 

more, A,,,, values increase slightly as the polyethylene chain lengthens. Accordingly, all 
the molecules 6, and all radical cations 6; show pronounced second-order DBL. (The 
remaining eigenvalues A,, of which A,,,_, is given in Table 2, are all much smaller than 

The two eigenvectors w " , ~ ~ ,  and NI,,,~~ *, belonging to the degenerate eigenvalue A,,,, are 
essentially the same for all 6, and 6,'. They may be chosen to have non-zero components in 
either of the two pentalene units and zero values in the other. For example, the eigenvec- 
tor M,,,,, I and M,,,~..~ of the radical cation 6: are: 

A,,,,,,,,.) 

They are very similar to those of 3 (and thus of 3') shown in (6). As before, other 
solutions are obtained by forming linear combinations. Consequently, here too second- 
order DBL is delocalized and fluctuating. The polyethylene chain is not affected by 
second-order DBL, so that the bond orders pp ,  obtained from the standard Huckel 
calculation are still valid. 

The charge-distribution analysis yields the following summed positive charges on the 
two pentalene and the central diene moieties for the radical cation 6; for the solution 
where second-order DBL is concentrated on one of the pentalene units. 

0.090e 0.145e 0.765e 
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Although the polyene moiety in the 6: systems seems to act mostly as a spacer (because the charge propaga- 
tion will oscillate mainly between the pentalene units), its role as a conjugating link is important. For example, the 
1.,,, values of pentalene (Amax = 2.357) and 2-vinylpentalene = 2.385) are essentially the same, whereas that 
of 1,2-di(pentalen-2-yl)ethene (A,,, = 3.054) is significantly larger. For the corresponding radical cations, one finds 
A,,, = 1.358, A,,, = 1.500, and A,,, = 2.137, respectively. Thus, the polyene moieties are not inactive spacers, even 
if their bond lengths are not affected by second-order DBL. 

6. Dependence of Fluctuating DBL on Connectivity. - We now show how the phe- 
nomenon of fluctuating DBL depends on the type of connectivity, using once more 
pentalene units as building blocks. Scheme 3 shows the molecule types we have examined. 
In Table 3 are collected the 1, values larger than 1.6, assumed to be a lower limit for R,,,,,,,,. 
In addition, the HOMOiLUMO gap A x  = (eLuMo - eHOMo)//3, and the symmetries of the 
HOMO, the LUMO, and the second-order DBL distortion mode are given for each 
molecule. 

s C ’ / 7 C ’ ! ? l C ’  3 

7 8 9 

1 0  11-  i 

14 1 5  

Earlier, we explained the presence of fluctuating DBL in 2,2’-bipentalenyl3 in terms 
of a degenerate pair of LUMOs, separated by a small energy gap from the HOMO4). The 
degeneracy of the LUMOs of 3 is due to the fact that the connected centres C(2) and C(2’) 
of the pentalene units lie on a nodal plane of the pentalene LUMO, as shown in (9) .  In 
contrast, when the pentalene units are joined at C(l) and C(l’), where the LUMO 
coefficients are non-zero, the resulting LUMOs of the dimer 7 are no longer degenerate, 
as illustrated in (14). Accordingly, I,,, of 7 is not degenerate, and the second-order DBL 
does not fluctuate without activation energy. However, as the second largest I ,  is close to 
I,,,, the activation energy will be rather small. 

4, We caution that a small HOMOiLUMO gap is a necessary, hut not a sufficient condition for second-order 
DBL. For example, fulvalene (Ax =0.311) and heptafulvalene (Ax = 0.174) yield A,,, = 1.102 and 1.216 
respectively, and are thus stable with respect to second-order DBL. This reflects the occasional failure of the 
pseudo-Jahn-Teller argument [ l  11 to predict the distortive behavior of molecules. 
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Table 3. Eigenvalues I ,  oftlte Bond-Bond Polarizability Matrices % (n) of a Series of Closed-Shell E,xamples, Their 
DBL Patterns. Orbital Gaps, and Symmetry Behavior of the Relevant Inner Orbitals 

No.") Symmetryb) I",') DBL-Typed) - A x e )  HOMOf) LUMO') Dist.,) 

1 D2h 2.357 (1) L 0.471 Bl" A" BI, 

7 c2 h 2.619 (1) LL 0.256 B, A" B" 
2.380 (1) LL 0.203 B, B, A, 

8 c, 1.767 (1) D,L~?) 0.434 A" A" A' 
1.636 (1) L,D,,~) 0.531 A" A A' 

c2 h 2.773 (1) LLL 0.178 A, A" A, 
2.626 ( I )  LLL 0.513 All B, B" 
2.153 ( I )  LLL 0.801 A" A" A, 

12 C2, 2.750 (1)LLL 0.188 Bl A2 B2 
2.465 (1) LLL 0.453 Bl Bl A, 
2.41 1 ( I )  LLL 0.820 Bl A2 B2 

13 c2h 1.787 (1) LDL') 0.429 A" A", B, A, 
1.768 (1) LDL') B" 

14 D2h 2.595 (1) L 0.311 B3, B2, Bk 

3 D2h 3.026 (2) DL; LD 0.206 B3, B2,; A, Big; B,, fluct. 

9 c2, 1.947 (2) LDD; DDL 0.371 Bl A2; BI B,; A, fluct. 
10 C2h 2.075 (2)LDD; DDL 0.332 B, B,; A, A,; B, fluct. 
11 

15 D2h 2.859 (2) LD; DL 0.174 B3, B2g; A" Big; B,, fluct. 

3 

The numbers refer to the molecules depicted in Scheme 3. 
Symmetry of the molecule under the assumption of coplanarity. 
Only those I ,  values are given which satisfy the condition I ,  > 1.6, where the latter value is taken as a lower 
limit for ;Icntlcal. The I.,,, values are given in italics. 
The values in parentheses is the degeneracy of the I ,  value. The second-order DBL pattern of each moiety is 
denoted by D (delocalized) or L (localized). The sequence of the symbols corresponds to the sequence of the 
pentalene subunits in the corresponding molecule. 
The top orbital gap is defined as A x  = ( E ~ ~ ~ ~ - E ~ ~ ~ ~ ) / ~  (italics), and the following ones as 

Irreducible representations of the HOMO, of the (accidentally degenerate) LUMOs, and of the LUMO+I, 
LUMO+2. 
Symmetry of the DBL distortion pattern. It corresponds, with exception of 13, to the product of the 
irreducible representations of the determining orbital pair (see text). 
The lower indices of the symbols D and L refer to the pentalene moieties of 8, as indicated in Scheme 3. 
These A,,, and lhman-l values are slightly split, notwithstanding the accidental degeneracy of the xLUMO values. 
See text. 

A X  = (&LUMO+I -&HOMO)/b and = (&I.UMO+Z -&HOMO)/b. 
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By the same argument, 1,2’-bipentalenylS has a nondegenerate LUMO, and, accord- 
ingly, a non-degenerate A,,,. In this case, the pentalen-2-yl moiety has a greater tendency 
to localize its double-bonds than the pentalen-1-yl unit, in accord with the size of the 
corresponding HOMOiLUMO and HOMO/LUMO+ 1 orbital-energy gaps. 

The terpentalenyl systems 9 to 13 have been limited to those of at least C,, or C,, 
symmetry, in which the three pentalene units can assume a coplanar conformation (i.e. 
excluding the overcrowded 2,1’:6‘,2“- and 1,1’:6’,1”-periterpentalenyls). They are the first 
members of polypentalenyl chains of type A-A-A-A. . . or A-B-A-B-A . . . . Of these, only 
9 and 10, which have pentalen-2-yl ‘end groups’, have a degenerate A,,,, and are thus truly 
fluctuating in the sense described for 3 to 6, and their radical cations. The remaining ones, 
where the ‘end groups’ are pentalen-1-yl moieties, behave similarly to 8 and 9. A particu- 
lar interesting case is 13 which is non-fluctuating although its LUMOs (15)  are acciden- 

HOMO @ 
tally degenerate. However, these LUMOs are no longer related to each other by symme- 
try, as they are in ( 9 )  for 3. Whereas the B, LUMO has large coefficients on the outer 
pentalene units, the A, LUMO is concentrated on the central one. On the other hand, 
the LUMO+l of 13 is essentially the in-phase combination of the outer pentalene 
LUMOs, and thus A,. According to our product rule, the distortion of type A, 
(LUMO+ l)@A,(HOMO) = A, is predicted to be somewhat less favorable than 
B,(LUMO)@A,(HOMO) = B,, in agreement with the result from the computation: 

Thus, the rule of thumb, regarding the relationship between the degeneracies of the 
LUMOs and of the A,,, values of a molecule, should be exercized with some care. 
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Table 3 also includes heptalene 14, which has a strong tendency towards DBL of the 
bond-alternating type, and its dimer 3,3’-biheptalenyl 15, which also exhibits fluctuating 
DBL, in analogy to 3. The analogy also holds with respect to the degeneracy of the pair of 
LUMOs of 15, which is caused by the connected C(3) and C(3’) lying on a node of the 
heptalene LUMO. 

To summarize, it is possible to rationalize ~ within obvious limits - the above 
observations in terms of the simple rules of thumb given in Chupt. 2 and 3, namely, 

A )  that the smaller the orbital gap Ax = (cLUMO - cHoMO)/p between the HOMO and 
the LUMO(s), the stronger the tendency towards second-order DBL, i.e. the larger A,,,, 

B )  that a pair of degenerate LUMOs (or, as the case may be, of HOMOs) will usually 
lead to degenerate A,,, values, and thus to fluctuating DBL, and 

C) that the product of the irreducible representations of the inner orbitals will 
correspond, more often than not, to the type of second-order DBL distortion. However, 
as is usual for such rules of thumb, they have their exceptions, as we have seen in the case 
of 13. 

Notwithstanding their limitations, our rules of thumb suggest at least, which types of 
building blocks are liable to yield oligomers with fluctuating DBL. 

7. Concluding Remarks. - At the level of a HMO perturbation theory, some systems 
have a low-energy pathway for charge-density migration. Such systems include radical 
cations built from pentalene units, linked at C(2) and C(2’) either directly or via a polyene 
chain. In contrast to pentalene itself ~ where DBL takes the form of bond alternation, and 
where the switch from one localization pattern to the other proceeds through a symmet- 
ric, delocalized, high-energy transition state - the fluctuating DBL and charge migration 
in these molecules proceeds without activation energy, and avoids the more symmetric 
delocalized structure. Polyheptalenyls behave in the same manner, if the heptalene units 
are linked through their 3- and/or 8-positions. This is reminscent of the charge migration 
in the benzene radical cation undergoing Juhn-Teller distortions, as first discussed by 
Moflititt and Liehr [15]. 

The charge propagation in the corresponding radical cations exhibits two interesting 
features. In the polypentalenyls consisting of N pentalene units, the excess positive charge 
has a tendency to settle on the central ring, if N is odd, or to migrate mainly between the 
two central rings, if N is even, and it needs a small activation energy to move towards the 
terminal pentalene moieties. On the other hand, when two pentalenes are separated by a 
polyene chain, the charge transfer, accompanying the passage from one extreme DBL 
structure to the other, is more like a classical electron-transfer process [ 161, involving 
intermediate DBL structures. 

Simple rules involving the symmetry behavior of the LUMOs and HOMOs of these 
molecules5)and the size of the gap between their orbital energies appear to allow a 
rationalization of most of the results. They should prove to be useful for designing 
molecules exhibiting activation-energy-free fluctuating DBL. Similar mechanisms involv- 

’) It is noteworthy that the graphs 8 of those molecules and radical cations mentioned above, which exhibit 
fluctuating DBL, belong from a topological point of view to the group D4 [17]. As a consequence, their 
line-graph e (a), representing the underlying symmetry of the bond-bond polarizability matrix%, belongs to 
the same group, which allows degenerate eigenvalues A,. It is not a priori evident that A,,, should be one of 
them. 
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ing electron transfer without activation energy may operate in other classes of com- 
pounds, relevant in material science, memory switches, or superconductivity. 

Our thanks go to Prof. J .  D. Dunitz (ETH-Zurich) and to Prof. L.  Salem (Universiti. de Paris) for their helpful 
suggestions and constructive criticisms. Needless to say that they are in no way responsible for the shortcomings of 
this contribution. 

Appendix. - For a given A system, extending over n 2p centres and having a topography characterized by a 
simple graph 8, belonging to the (maximal) symmetry point-group G, one first computes the HMOs 

v, = z!L A C,,, 

&, = mo + Box, 

(Al) 

and the corresponding orbital energies 

(A2) 

according to standard HMO practice, setting all a!, = a. and all /3," = /lo for bonded centres p , v .  The x, are the 
eigenvalues of the adjacency matrix A of the graph 0. The total A energy is 

& , ~ = z , b j c j  = N ~ ~ o + B o K , o ~  (A31 

where the b, are the occupation numbers of the orbitals v, in the given electronic configuration d, of the molecule. 
N ,  = C, b, is the number of A electrons, and Xn,o = 2, bp,. 

First-order DBL is determined by the bond orders 

Pp = z, b, c,,, Cq. (A4) 

In a crude approximation, the first-order equilibrium bond lengths R:" are then given by 

where R, is the lenght of a n bond in benzene, and 213 the value of the corresponding bond order. The parameters 
R, and rare  empirically calibrated by comparison with observed bond lengths: 

REJpm rr 140 ~ 17 bPv - 213). (A61 

Note that first-order DBL always conserves the full (maximal) symmetry G of the graph Q, and thus of the n 
system. 

We now move the reference point for our calculation from R,, = R, to R,,, = R t v  for each bond p,v. The total 
energy at this point is then EP,, = E,!, + EE. For small changes in bond-lengths, 6R,, = R,, - R:>, the total energy 
E,,, can be developed around EY,, according to 

E,,,, = EP,,,. + (1/2)zfiVk6R;,, + (l/2)z,,,C,,(aZE,/aR,,r?R,,)6R,,6R,, + higher terms. (A71 

Assuming that in the interval of interest, /3," is a linear function of the interatomic distance R,,, i.e. a2B,,,/~'R,, = 0, 
then the part of ( A 7 )  in parentheses becomes [7] 

(a2E,/aR,, aR,,) = 2 ~ - ~ ~ , ~ , ~ ,  (aa,,/aR,,) (aB,o/aR,o). (AS) 

where the niivpo are the bond-bond polarizabilities of the x system computed according to 

(A91 
(CPIC"k + C&C"l)(c,lc,k + CpkC61) 

&, - Ek 
n,vyo = B+% # J b, 

As defined in ( A 9 ) ,  the A,,,,~ are pure numbers, i.e. dim(n,iv,,o) = 1. 
The dependence of/3,,, on the interatomic distance R,,, can be roughly estimated from PE spectroscopic data of 

aromatic hydrocarbons [18], polyenes [19], and polyynes [20]. Assuming that this dependence is linear within the 
range of interatomic distances covered in our treatment, one obtains aP,,,/aR,, rr 0.13 eV pm-'. In conjugation 
with (A6) ,  this leads to 

apPL/appL rr -2.2 eV. ('410) 

To assess whether the molecule undergoes second-order DBL towards one or the other of its KekulP 
structures, or towards some other pattern with pronounced bond alternation, we first compute the bond-bond 
polarizabilities zl<,,,,,, of the N bonds of the A system according to ( A 9 ) ,  and collect them in a symmetric N x N 
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matrix % =  (n,,,,g,), with the index pairs p , v  in the sequence l , l ; l ,2 ; .  . . l , p . . . I , N ;  2,1;2,2:. . .2, /1 
Solving the eigenvalue/eigenvector problem 

%on= loo 

yields N positive eigenvalues 

2 , < l 2 <  . . .  < a , <  ' . .  <aN=amai  

M, = ( U , . , J T  

amax > amtical  = kI/MBb12 

and the corresponding column eigenvectors 

It can be shown [7] that second-order DBL occurs within our model, if 

where k is the (mean) u-bond force constant assuming a harmonic potential V0(RJ,  /I,, the resonance integral, and 
& its derivative (d,!I/dR), (both for the interatomic distance R,,). If (A14) is satisfied, second-order DBL proceeds 
according to the irreducible representation f (urnax) of G, to which the eigenvector urnax = ( u , , , , , ~ ) ~  of Amax 
belongs. In addition, the individual components yield a first approximation of the relative sign and size of the 
expected changes in bond-lenght R,,,. 

As far as the criterion ( A l l )  is concerned, it can be shown that 1,,,,,,,, = 1.7 to 1.8 is a reasonable value [7]. 
Thus, a molecule with La, > 1.7 to 1.8 will undergo second-order DBL, whereas molecules with Lax < 1.7 to 1.8 
will conserve their first-order, fully symmetric delocalized structure. 

Although the procedure tells us, whether a molecule will undergo spontaneous DBL, and which of the bonds 
are going to contract or lengthen, it cannot provide values for the final equilibrium bond-lengths R,v,eq, because 
these depend on higher-order terms not included in the treatment, and on the unharmonicity of the true u potential 
VO(R,J. However, a reasonable approximation for the equilibrium bond-orders is provided by the formula 

P,wq =I),,,, + f e q . .  Umax,pv ( ~ 1 5 )  

where& is a factor, roughly in the range of 1 >f,, > 1/2. Using (A6) ,  (AIO), and ( A 1 5 )  one finds 

B,",cq = D O ( 1  + 0.66@,, - 2/3) + o.66-f,q'~,ax,,,~). (A16) 

Setting p,v,eq/&, = 1 + 
this work: 

for practical reasons, one obtains in a surlicient approximation, which we shall use in 

Leq N (2/3)@," - 2/31 + Um,x,py/2 (A 17) 

Using these values within a further HMO calculation, one obtains the orbitals ( A I )  of the molecule, including first 
and second-order DBL. These allow a discussion of the charge redistribution within the molecule, which accompa- 
nies DBL. 

As this discussion is to be carried out on a HMO level, it is userull to remind oneself of some of the peculiar 
features of the HMO model. From the coefficients c , ~ ~  of the linear combinations ( A l ) ,  one calculates the 
bond-orders ( A 4 )  and the charge orders 

9,' = 4 4 (A 18) 

which define the n-electron charge 

(A19) Q = -  a eq, 
at the centre p ,  i.e. the charge within the space spanned by the basis orbital 4,. Only if this space is the same for all 
b,, then the n-electron densities at the different centres p are proportional to q,. 

The bond-orders pPv are not associated with local charges Q," between the centres, because these are defined as 

Q B' = -e ~P,~S,,  (A20) 

i.e. in a model with non-orthogonal basis functions. However, in our HMO model the @,are assumed to form an 
orthogonal set, so that Q,, = 0, because S,, = 0. (It follows that in a HMO model Z,q, = N, = number of 71 

electrons.) As a consequence, in a HMO model, charge transfer involves only changes in Q,. 
Our treatment for second-order DBL takes care of the above features. It neglects the changes in Q,. This is the 

reason why we are using only the bond-bond polarizability matrix x = ( z , ~ , ~ ~ ) ,  and do not include the the 
atom-atom and atom-bond polarizahilities. 
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